25+64=x^2

Simple and best practice solution for 25+64=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25+64=x^2 equation:



25+64=x^2
We move all terms to the left:
25+64-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+89=0
a = -1; b = 0; c = +89;
Δ = b2-4ac
Δ = 02-4·(-1)·89
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{89}}{2*-1}=\frac{0-2\sqrt{89}}{-2} =-\frac{2\sqrt{89}}{-2} =-\frac{\sqrt{89}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{89}}{2*-1}=\frac{0+2\sqrt{89}}{-2} =\frac{2\sqrt{89}}{-2} =\frac{\sqrt{89}}{-1} $

See similar equations:

| 5​​h​​=5.1 | | p−2(4−3p)=2p+7 | | (4/(x+3))+(2/(x-3))=12/((x+3)(x-3)) | | -9y+40=7(y-8) | | 1/2(-1/3x+12)=10 | | 2(w+9)=5w+9 | | 2y-19=7(y-2) | | 6(1+4x)+2=6(5x)+2 | | 6-2(7x-8)=-12 | | h-8.3=-5.4 | | -6=-8/3x+7-5/3x | | 5x+7=13x-1 | | (7x-6)+(9x+20)=142 | | -2x+4=-2(x-2) | | -9(18x-11)=19(-35+3x) | | 83.3*0.15x=90 | | X2-4x+68=0 | | (3x-5)(2x+3)-3x=-15 | | 83.3*0.25x=90 | | -8(7-x)=4/5(x+11) | | 3b+2(3)=91.50 | | -6+4x/4=-5 | | -3p+29=14 | | -1−10b=-10−7b | | 0=12x^2+24x-96 | | -2(y-5)=7y+28 | | f/3-24=-28 | | -7+2j=9-2j | | 10x+2x=10+2)x | | 2g−-9=19 | | g/3+14=28 | | -7+2j=9−2j |

Equations solver categories